Signed degree sets in signed bipartite graphs
نویسندگان
چکیده
A signed bipartite graph G(U, V) is a bipartite graph in which each edge is assigned a positive or a negative sign. The signed degree of a vertex x in G(U, V) is the number of positive edges incident with x less the number of negative edges incident with x. The set S of distinct signed degrees of the vertices of G(U, V) is called its signed degree set. In this paper, we prove that every set of integers is the signed degree set of some connected signed bipartite graph.
منابع مشابه
A Note on Signed Degree Sets in Signed Bipartite Graphs
A signed bipartite graph G(U, V ) is a bipartite graph in which each edge is assigned a positive or a negative sign. The signed degree of a vertex x in G(U, V ) is the number of positive edges incident with x less the number of negative edges incident with x. The set S of distinct signed degrees of the vertices of G(U, V ) is called its signed degree set. In this paper, we prove that every set ...
متن کاملSigned Degree Sequences in Signed Bipartite Graphs
A signed bipartite graph is a bipartite graph in which each edge is assigned a positive or a negative sign. Let G(U, V ) be a signed bipartite graph with U = {u1, u2, · · · , up} and V = {v1, v2, · · · , vq} . Then signed degree of ui is sdeg(ui) = di = d + i − d − i , where 1 ≤ i ≤ p and d+i ( d − i ) is the number of positive(negative) edges incident with ui , and signed degree of vj is sdeg(...
متن کاملOn net-Laplacian Energy of Signed Graphs
A signed graph is a graph where the edges are assigned either positive ornegative signs. Net degree of a signed graph is the dierence between the number ofpositive and negative edges incident with a vertex. It is said to be net-regular if all itsvertices have the same net-degree. Laplacian energy of a signed graph is defined asε(L(Σ)) =|γ_1-(2m)/n|+...+|γ_n-(2m)/n| where γ_1,...,γ_n are the ei...
متن کاملNonnegative signed total Roman domination in graphs
Let $G$ be a finite and simple graph with vertex set $V(G)$. A nonnegative signed total Roman dominating function (NNSTRDF) on a graph $G$ is a function $f:V(G)rightarrow{-1, 1, 2}$ satisfying the conditionsthat (i) $sum_{xin N(v)}f(x)ge 0$ for each $vin V(G)$, where $N(v)$ is the open neighborhood of $v$, and (ii) every vertex $u$ for which $f(u...
متن کاملSigned analogs of bipartite graphs 1
We characterize the edge-signed graphs in which every 'significant' positive closed walk (or combination of walks) has even length, under seven different criteria for significance, and also those edge-signed graphs whose double covering graph is bipartite. If the property of even length is generalized to positivity in a second edge signing, the characterizations generalize as well. We also char...
متن کامل